製品  PRODUCTS
マイクロ流体デバイス
Microfluidic Devices
圧力制御式送液システム / Pressure-based flow controllers

圧力制御式送液システム Flow EZ
制御した圧力をリザーバに加えることで,安定した送液を行う。

Fluigentの装置を使用して生成したPLGA粒子
精密な圧力制御により,単分散粒子を容易に生成可能。

拡張性

シンプルな1種類の液体の送液から,多数の液体を同時に扱う実験まで,幅広い用途にお使いいただけます。流量計やバルブ装置等をセットアップに組み込むことで,送液のスイッチングや定量注入,再循環等の様々な実験プロトコルに対応可能です。

操作性

スタンドアローン使用時は,本体のダイヤルで圧力や流量を指定できます。PC接続時は,専用のソフトウェアによる送液制御やデータの取得が可能です。複数のモジュールを使用する際は,ワンタッチ操作で簡単にモジュール同士を接続・分離できます。

プロトコル自動化

送液システムをPCに接続する場合,ソフトウェアを使用して複雑な送液プロトコルを自動化することが可能です。圧力や流量だけでなく,送液するタイミングや液体の体積,バルブ位置の切替え等,多くのパラメータを自由に設定いただけます。

カスタマイズ

カタログ製品だけでなく, OEM用のモジュールも用意しています。御要望に応じて装置等のカスタマイズも可能です。実行可能性の検討から量産まで,ワンストップで対応いたします。

ウェビナーリスト / Webinar list

Fluigentによるウェビナー / オンラインワークショップ


[液滴生成]
Master the production of double emulsions, 2021年4月
Double emulsion production made easy, 2020年11月
RayDrop, a universal droplet generator based on a non-embedded co-flow-focusing, 2020年6月
Drug encapsulation in biocompatible microparticle, 2020年4月

[ライフサイエンス]
How to turn your fluorescence microscope into a spatial omics platform, 2020年12月
Automate cellular studies with ARIA, 2020年4月

[送液制御 / マイクロ流体]
Fast electrical impedance spectroscopy for single-cell characterization and counting, 2021年3月
LineUp series, the new generation of microfludic controllers, 2020年9月
Concepts of microfluidics, 2020年5月

発表事例 / Publication list

Fluigentの送液システムを用いた成果抜粋


[液滴生成]
Microfluidic Generation of All-Aqueous Double and Triple Emulsions. M Jeyhani et al., small, Vol. 16, Issue 7, 2020, 1906565 (Keywords: Aqueous two-phase systems, Dextran, Double emulsions)
Responsive Janus and Cerberus emulsions via temperature-induced phase separation in aqueous polymer mixtures. M Pavlovic et al., Journal of Colloid and Interface Science Vol. 575, 2020, 88-95 (Keywords: Complex emulsions, Aqueous two-phase systems, Janus particles)
Microfluidic droplet generation based on non-embedded co-flow-focusing using 3D printed nozzle. A Dewandre et al., Sci Rep 10, 21616 (2020) (Keywords: Fluid dynamics, Microfluidics, Droplet generation)
High-Throughput Aqueous Two-Phase System Droplet Generation by Oil-Free Passive Microfluidics. M Mastiani et al., ACS Omega 2018, 3, 8, 9296–9302 (Keywords: Surface tension, Lipids, Liquids)
A microfluidic needle for sampling and delivery of chemical signals by segmented flows. S Feng et al., Appl. Phys. Lett. 111, 183702 (2017) (Keywords: Microfluidic needle, Chemical signals)
pH-Responsive liquid crystal double emulsion droplets prepared using microfluidics. J Y Kwon et al., RSC Adv., 2016,6, 55976-55983 (Keywords: Nematic liquid crystal, Double emulsion)

[液滴生成 (バイオ分野)]
Microfluidics Technology for the Design and Formulation of Nanomedicines. Eman Jaradat et al., Nanomaterials 2021, 11, 3440 (Keywords: Drug delivery, Liposomes, Microfluidics, Nanoparticles, Nanomedicine, PLGA)
Monosized Polymeric Microspheres Designed for Passive Lung Targeting: Biodistribution and Pharmacokinetics after Intravenous Administration. M Agnoletti et al., ACS Nano 2020, 14, 6, 6693–6706 (Keywords: PLGA, Microspheres)
Direct transfection of clonal organoids in Matrigel microbeads: a promising approach toward organoid-based genetic screens. B Laperrousaz et al., Nucleic Acids Research, 2018, Vol. 46, No. 12 (Keywords: Cell biology, DNA-Mediated Cell Transformation and Nucleic Acids Transfer)
Cell-free extract based optimization of biomolecular circuits with droplet microfluidics. Y Hori et al., Lab Chip, 2017,17, 3037-3042 (Keywords: Biomolecular circuits, Biocircuits, Droplets)
High throughput single cell counting in droplet-based microfluidics. H Lu et al., Scientific Report 7, 2017, 1366 (Keywords: Engineering, Lab-on-a-chip)

[がん関連アプリケーション]
The cancer glycocalyx mediates intravascular adhesion and extravasation during metastatic dissemination. G Offeddu et al., Communications Biology Vol. 4, 255 (2021) (Keywords: Cancer models, Glycobiology, Metastasis)
Microfluidic Organoids-on-a-Chip: Quantum Leap in Cancer Research. F Duzagac et al., Cancers 2021, 13(4), 737 (Keywords: OOAC, Organoids, Cancer models)
Flow-Induced Transport of Tumor Cells in a Microfluidic Capillary Network: Role of Friction and Repeated Deformation. N Kamyabi et al., Cel. Mol. Bioeng. (2017) 10: 563 (Keywords: Tumor cells, Microfluidics, Capillary)
FISH-in-CHIPS: A Microfluidic Platform for Molecular Typing of Cancer Cells. K Perez-Toralla et al., Methods in molecular biology (Clifton, N.J.): 211-220 (Keywords: FISH, Gene amplification, Microfluidic)

[血液関連アプリケーション]
A Microfluidic Model of Hemostasis Sensitive to Platelet Function and Coagulation. R M Schoeman et al., Cel. Mol. Bioeng. (2017) 10: 3 (Keywords: Biorheology, Biotransport, Platelet)
Direct Tracking of Particles and Quantification of Margination in Blood Flow. E J Carboni et al., Biophys. Journal, Vol 111, 7, 1487-1495 (2016) (Keywords: Margination, Drug delivery, Blood flow)

[セルソーティング]
Cell Sorting Using Electrokinetic Deterministic Lateral Displacement. B Ho et al., Micromachines 2021, 12(1), 30 (Keywords: Cell sorting, DLD, Electrokinetics)
A 3D hydrodynamic flow-focusing device for cell sorting. X Yuan et al., , Microfluidics and Nanofluidics Vol. 25, 23 (2021) (Keywords: 3D flow-focusing, Multilayer structures, Cell sorting)

[ハイスループットスクリーニング]
Crossed flow microfluidics for high throughput screening of bioactive chemical–cell interactions. Z Tong et al., Lab Chip, 2017, 17, 501-510 (Keywords: High throughput screening, Selective cell capture, Crossed laminar flow)

[マイクロピペット吸引法]
Micropipette aspiration: A unique tool for exploring cell and tissue mechanics in vivo. K Guevorkian et al., Methods in cell biology 139 (Keywords: Actomyosin contractility, Cell adhesion, Cell and tissue mechanics)

[Flow EZ / Push-Pullを使用した2021年以降の発表]
Fully 3D-printed soft robots with integrated fluidic circuitry. JD Hubbard et al.
The effects of luminal and trans-endothelial fluid flows on the extravasation and tissue invasion of tumor cells in a 3D in vitro microvascular platform. C Hajal et al.
CloneSeq: A highly sensitive analysis platform for the characterization of 3D-cultured single-cell-derived clones. D Bavli et al.
A microdevice platform for characterizing the effect of mechanical strain magnitudes on the maturation of iPSC-Cardiomyocytes. W Dou et al.
A core-annular liquid–liquid microextractor for continuous processing. ZX Yu et al.
A 3D Printed Morphing Nozzle to Control Fiber Orientation during Composite Additive Manufacturing. CD Armstrong et al.
Microfluidic electrical impedance assessment of red blood cell-mediated microvascular occlusion. S Tyagi et al.
Optimizing pressure-driven pulsatile flows in microfluidic devices. SM Recktenwald et al.
Upscaling of pneumatic membrane valves for the integration of 3D cell cultures on chip. N Compera et al.
Time-resolved investigation of mesoporous silica microsphere formation using in situ heating optical microscopy. AJ Fijneman et al.
Self-Assembled Permanent Micro-Magnets in a Polymer-Based Microfluidic Device for Magnetic Cell Sorting. L Descamps et al.
Deformation and rupture of microcapsules flowing through constricted capillary. D Diamond et al.
Multiple objects interacting with a solidification front. Z Han et al.
Heart Muscle Microphysiological System for Cardiac Liability Prediction of Repurposed COVID-19 Therapeutics. B Charrez et al.
Porous Silicon Biosensor for the Detection of Bacteria through Their Lysate. R Vercauteren et al.
Highly parallelized human embryonic stem cell differentiation to cardiac mesoderm in nanoliter chambers on a microfluidic chip. AR Vollertsen et al.
Microheart: A microfluidic pump for functional vascular culture in microphysiological systems. GS Offeddu et al.
Producing Hollow Polymer Microneedles Using Laser Ablated Molds in an Injection Molding Process. T Evens et al.
Growth response and recovery of Corynebacterium glutamicum colonies on single-cell level upon defined pH stress pulses. K El et al.
Acoustofluidic Medium Exchange for Preparation of Electrocompetent Bacteria Using Channel Wall Trapping. M Gerlt et al.
The Functional Nanopore (FuN) Screen: A Versatile Genetic Assay to Study and Engineer Protein Nanopores in Escherichia coli. W Weber et al.
Synthetic cell-based materials extract positional information from morphogen gradients Supplementary Information. A Dupin et al.
The Use of Micropipette Aspiration to Measure Cortex Tension in HeLa Cells and Cardiac Myocytes. S Baillargeon et al.